BALANCING REVIEW AND TYPES OF REACTIONS

Unit 5

BALANCING = TRIAL AND ERROR!

$$O_{2} \rightarrow$$

$$O_2 \rightarrow Fe_2O_3$$

$$Fe = 1$$

$$Fe = 2$$

$$O = 2$$

$$O = 3$$

BALANCING = TRIAL AND ERROR!

$$O_2 \rightarrow$$

Fe +
$$O_2 \rightarrow Fe_2O_3$$

$$Fe = 2$$

$$O = 2$$

$$O = 3$$

NO GOOD!!!! Oxygen can't be balanced!

BALANCING = TRIAL AND ERROR!

Work with oxygen and go to least common multiple!

4 Fe +
$$3O_2 \rightarrow 2Fe_2O_3$$

Fe =
$$\frac{1}{4}$$

$$O = 26$$

$$Fe = 2/4$$

$$O = 36$$

BALANCED!!!!

BALANCING WITH POLYATOMICS!

$$NH_4OH + H_2SO_4 \rightarrow (NH_4)_2SO_4 + HOH$$

$$NH_4 = 1$$
 $NH_4 = 2$

$$OH = 1$$
 $OH = 1$

$$H=2$$
 $H=1$

$$SO_4 = 1$$
 $SO_4 = 1$

BALANCING WITH POLYATOMICS!

$$2NH_4OH + H_2SO_4 \rightarrow (NH_4)_2SO_4 + 2HOH$$

$$NH_4 = \frac{1}{2}$$

$$NH_4 = 2$$

$$OH = \frac{1}{2}$$

$$OH = \frac{\chi}{2}$$

$$H=2$$

$$H = 1/2$$

$$SO_4 = 1$$
 $SO_4 = 1$ BALANCED!!!!

BALANCING PRACTICE

TYPES OF REACTIONS

TYPES OF REACTIONS

- There are millions of chemical reactions, but we can classify them into <u>five</u> main types of reactions:
 - Synthesis
 - Decomposition
 - Single Displacement
 - Double Displacement
 - Combustion

SYNTHESIS REACTIONS

 Two or more substances <u>combine</u> to form another substance

$$A + B \rightarrow AB$$

SYNTHESIS REACTIONS

Balance the following:

$$2Na + Cl_2 \rightarrow 2NaCl$$

4Al
$$+3O_2 \rightarrow 2Al_2O_3$$

DECOMPOSITION REACTIONS

 One substance decomposes, or <u>breaks down</u>, into two or more substances

$$AB \rightarrow A + B$$

DECOMPOSITION REACTIONS

Balance the following:

$$CaCO_3 \rightarrow CaO + CO_2$$

BALANCED!!!!

$$2H_2O \rightarrow 2H_2 + O_2$$

SINGLE DISPLACEMENT

One element <u>replaces</u> another element in a compound

$$A + BC \rightarrow AC + B$$

An element reacts with a compound to form a new element and a different compound. The reactant element "displaces" an element in the compound that is the most chemically similar. For example, a metal will replace a different metal.

SINGLE DISPLACEMENT

Balance the following:

$$Cu + 2AgNO_3 \rightarrow 2Ag + Cu(NO_3)_2$$

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

DOUBLE DISPLACEMENT

 The <u>positive</u> ions of two compounds <u>switch</u> with each other to form two new compounds

- Occur in <u>solutions</u>
- A <u>precipitate</u>, <u>water</u>, or a <u>gas</u> is formed

DOUBLE DISPLACEMENT

$$AB + CD \rightarrow AD + CB$$

DOUBLE DISPLACEMENT

Balance the following:

$$CaCl_2 + 2AgNO_3 \rightarrow Ca(NO_3)_2 + 2AgCl$$

NaOH + HCl → NaCl + HOH

BALANCED!!!!

COMBUSTION

 A carbon based substance reacts with oxvgen to produce energy in the form of heat and light and CO_2 and H_2O .

aka <u>burning</u>

COMBUSTION

Balance the following:

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

QUESTIONS TO ASK

Is there one product?

<u>Synthesis</u>

• Is there one reactant?

Decomposition

QUESTIONS TO ASK ...

Are CO₂ and H₂O two of the Products?
 <u>Combustion</u>

 Is one element that is by itself replacing another in a compound?

Single Replacement

 Are there only compounds that switch ions?

Double Replacement