BALANCING REVIEW AND TYPES OF REACTIONS

Unit 5

BALANCING = TRIAL AND ERROR!

$$
\begin{array}{ll}
\mathrm{Fe}+\mathrm{O}_{2} \rightarrow & \mathrm{Fe}_{2} \mathrm{O}_{3} \\
\mathrm{Fe}=1 & \\
\mathrm{Fe}=2 \\
\mathrm{O}=2 & \\
\mathrm{O}=3
\end{array}
$$

BALANCING $\equiv T R I A L A N D E R R O R!$

$$
\begin{array}{cl}
\text { (8) } \mathrm{Fe}+\mathrm{O}_{2} \rightarrow & \mathrm{Fe}_{2} \mathrm{O}_{3} \\
\mathrm{Fe}=\lambda \mathrm{CO} & \mathrm{Fe}=2 \\
\mathrm{O}=2 & \mathrm{O}=3
\end{array}
$$

NO GOOD!!!! Oxygen can't be balanced!

BALANCING = TRIAL AND ERROR!

Work with oxygen and go to least common multiple!

$$
\begin{array}{cc}
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow & 2 \mathrm{Fe}_{2} \mathrm{O}_{3} \\
\mathrm{Fe}=\not \subset 4 & \mathrm{Fe}=\not 24 \\
\mathrm{O}=\not 26 & \mathrm{O}=\not 26 \\
\text { BALANCED!!! }
\end{array}
$$

$\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\mathrm{HOH}$

$$
\begin{array}{ll}
\mathrm{NH}_{4}=1 & \mathrm{NH}_{4}=2 \\
\mathrm{OH}=1 & \mathrm{OH}=1 \\
\mathrm{H}=2 & \mathrm{H}=1 \\
\mathrm{SO}_{4}=1 & \mathrm{SO}_{4}=1
\end{array}
$$

BALANCING WITH POLYATOMICS!

$2 \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2 \mathrm{HOH}$

$$
\begin{array}{ll}
\mathrm{NH}_{4}=\neq 2 & \mathrm{NH}_{4}=2 \\
\mathrm{OH}=\neq 2 & \mathrm{OH}=\neq 2 \\
\mathrm{H}=2 & \mathrm{H}=\neq 2 \\
\mathrm{SO}_{4}=1 & \mathrm{SO}_{4}=1 \\
\text { BALANCED!!!! }
\end{array}
$$

BALANCING PRACTICE

TYPES OF REACTIONS

Two or more substances combine to form another substance

A +
B
$\rightarrow \mathrm{AB}$

Balance the following:

$2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$

$4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$

- One substance decomposes, or breaks down, into two or more substances

$$
A B \rightarrow A+B
$$

Balance the following:

$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$ BALANCED!!!!

$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$

One element replaces another element in a compound

A
 $+$
 BC

 $+$
 B

Single Displacement:

$+$

An element reacts with a compound to form a new element and a different compound. The reactant element "displaces" an element in the compound that is the most chemically similar. For example, a metal will replace a different metal.

SINGLE DISPLACEMENT

Balance the following:
$\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$

- The positive ions of two compounds switch with each other to form two new compounds
- Occur in solutions
- A precipitate, water, or a gas is formed

DOUBLE DISPLACEMENT

$\mathrm{AB}+\mathrm{CD} \rightarrow \mathrm{AD}+\mathrm{CB}$

DOUBLE DISPLACEMENT

Balance the following:

$\mathrm{CaCl}_{2}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{AgCl}$
$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{HOH}$

BALANCED!!!!

- A carbon based substance reacts with oxygen to produce energy in the form of heat and light and CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.
- aka burning

COMBUSTION

Balance the following:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

- Is there one product?

Synthesis

- Is there one reactant?

Decomposition

- Are CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ two of the Products?

Combustion

- Is one element that is by itself replacing another in a compound?

Single Replacement

- Are there only compounds that switch ions?

Double Replacement

