

Procedure

1. Each group of 3 will get 1 small bag of plain M&M's and 1 small bag of peanut M&M's.

2. Count the number of Plain M&M's in your bag and record this number in the data table below. Repeat this step for the Peanut M&M's.

3. Using a piece of clean paper towel as a weighing boat, measure the total mass of your plain M&M's and record this number in the data table. Repeat this step for the Peanut M&M's. ***REMEMBER to ZERO out the paper towel!

DATA TABLE:	Number of M&M's	Mass of M&M's
Isotope #1 - Plain M&M's	20	17.11
Isotope #2 - Peanut M&M's	5	13.69
Total Number of all your M&M's		

Calculate the average mass of each isotope using the formula to the right.

Total Mass # of M&M's Average Mass =

Isotope #1 – Plain M&M	Isotope #2 – Peanut M&M	
10. Average mass of Isotope #1 =	11. Average mass of Isotope #2 =	

Calculate the percent abundance of each isotope. Of all the M&M's you have, what % of them are plain and what % are peanut?	% abundance = $\frac{\# of \ each \ type \ of \ M\&M}{TOTAL \ \# \ of \ all \ M\&M's} \ x \ 100$	
Isotope #1 – Plain M&M	Isotope #2 – Peanut M&M	
12. % abundance of Isotope #1 =	13. % abundance of Isotope #2 =	

14. Calculate the average "atomic mass" of your M&M's.

Average Atomic Mass = $\frac{(mass of isotope 1)(\% abundance) + (mass of isotope 2)(\% abundance) ...}{(mass of isotope 2)(\% abundance)}$

100

Average Atomic Mass =

Conclusion Questions

15. Is your average "atomic mass" close to or the same as students in other groups?

16. Would using king size bags of M&M's make a difference to the average "atomic mass"? Why or why not?

17. How do Hydrogen-1, Hydrogen-2, and Hydrogen-3 differ from each other?

18. Sulfur has 4 isotopes: sulfur-32 is 95.0%, sulfur-33 is	.76%, sulfur-34 is 3.22%, and sulfur-36 is 0.89% abundant.
Calculate its average atomic mass.	

Average Atomic Mass =