States of Matter Ch. 3

States of Matter

- Materials can be classified as solids, liquids, or gases based on whether their shapes and volumes are definite or variable (changing)
- Matter can change from one state to another without changing properties

Solids, Liquids and Gases:

- Solid - definite shape and volume- atoms "stuck" in place
- Liquid - Definite volume, and shape of whatever they
 are in- "sticky" (cohesive) forces that keep atoms stuck together
- Gases - No definite shape or volume- atoms "bounce" around everywhere

2 States of matter you didn't learn about in school.... Until now

- Plasma

When temperatures
rise to 1000 Celsius
and up you get plasmas

- Stars
- Aurora Borealis

- Bose-Einstein
- Temperatures very close to absolute zero
- All atoms begin to act the same

Kinetic Molecular Theory

- All particles within an object are moving.
- Kinetic energy is the energy an object has due to motion.
- Atoms in solids simply vibrate in place.
- Atoms in liquids are free to flow from container to container.
- Atoms of gases fly within their given area.

Phases of Matter Rap

- Your goal \rightarrow
- WRITE A RAP, SONG, OR POEM that illustrates the important concepts from 3.1 and 3.2 (Gas pressure).
- Lyrics should be written clearly and neatly on large white paper or construction paper.

Gas Pressure

- Force distributed over an area.
- The smaller the area, the greater the pressure (cleats).
- The collision of gas particles with themselves and their container causes gas pressure.

- Factors that affect gas pressure include:
- Temperature (rise increases pressure)
- Volume (reducing the amount of volume available increases pressure)
- The number of particles (increasing the number of particles increase pressure).
- What is Oobleck??????
- Put all your belongings under desk!!!

Charles's Law

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

- Volume $=\mathrm{cm}^{3}$
- Temp. = Kelvins (K)
- As the temp. increases, a gas will try to occupy a greater volume of space.

Charles's Law

Charles Law Practice

- Gas stored in a tank has a volume 30.0 L at 273 K . The temperature of the tank increases to 305 K , what is the new volume of the gas?
- $\mathrm{V}_{1}=30.0 \mathrm{~L} \quad \mathrm{~T}_{1}=273 \mathrm{~K} \| \mathrm{T}_{2}=305 \mathrm{~K}$
- $V_{2}=$?
- Equation: $\frac{\mathbf{V}_{1}}{T_{1}}=\frac{\mathbf{V}_{2}}{T_{2}}$
- Solve: $\quad 30.0 \mathrm{~L}=\underline{\mathrm{V}}_{2}$ $273 \mathrm{~K} \quad 305 \mathrm{~K}$

Volume: 33.5 L

Boyle's Law

$$
P_{1} V_{1}=P_{2} V_{2}
$$

- $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
- As the volume of a container decreases, the pressure the gas exerts of the container increases.

Boyle's Law

Boyle's Law Practice

- The pressure in a gas tank is 10 kPa and the volume is 1.0 liter. The tank can hold a capacity of 4.0 liters. What is the pressure at this volume?
- $\mathrm{P}_{1}=10 \mathrm{kPa} \quad \mathrm{V}_{1}=1.01 \quad \mathrm{~V}_{2}=4.0 \mathrm{~L}$
- $\mathrm{P}_{2}=$?
- $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
- Solve: $(10 \mathrm{kPa})(1.0 \mathrm{~L})=\left(\mathrm{P}_{2}\right)(4.0 \mathrm{~L})$
- $\mathrm{P}=2.5 \mathrm{~L}$

The Combined Gas Law

- If Charles' and Boyle's laws are combined, you get:

$$
\underline{\mathrm{P}}_{1} \underline{\mathrm{~V}_{1}}=\frac{\underline{P}_{2} \underline{V}_{2}}{\mathrm{~T}_{1}} \mathrm{~T}_{2}
$$

- 1. A gas has a volume of 5.0 L at a pressure of 50 kPa . What happens to the volume when the pressure is increased to 125 kPa ?
- 2. Gas stored in a tank at 273 K has a pressure of 388 kPa . The safe limit for the pressure is 825 kPa . At what temperature will the gas reach this pressure?
- 3. At $10^{\circ} \mathrm{C}$, the gas in a cylinder has a volume of 0.250 L . The gas is allowed to expand to 0.285 L . What must the final temperature be for the pressure to remain constant? (Hint: Convert from degrees Celsius to kelvins using the expression ${ }^{\circ} \mathrm{C}+273=\mathrm{K}$.)

Phase Change of matter

- Is the reversible physical change that occurs when a substance changes from one state of matter to another
- Ex: Melting, freezing, vaporization, condensation, sublimation, deposition.

Endothermic VS Exothermic

- Endothermic
- Absorbs energy
- Solid to liquid
- Liquid to gas
- Solid to gas
- Exothermic
- Releases energy
- Liquid to solid
- Gas to liquid
- Gas to a solid

Temperature change

- During a phase change the temperature does not change.
- When a solid is heated the temperature will slowly rise until it reaches the melting point.
- When all melting is complete then the temperature will rise again until the boiling point is reached.

These Reaction Cause A Phase Change

- Freezing
- Sublimation
- Condensation
- Melting
- Vaporization
- Deposition

Melting and freezing

- Melting- solid to liquid
- The arrangement of water molecules become less orderly (messy) as water melts.
- Endothermic
- Freezing- liquid to solid
- And more orderly (neater) as water freezes.
- exothermic

Freezing does not have to happen at cold temperatures.
Silicon freezes at $1412^{\circ} \mathrm{C}\left(2574^{\circ} \mathrm{F}\right)$.
Remember freezing and melting points are the same temperature.

Vaporization

- Vaporization \rightarrow change from liquid into a gas.
- Endothermic process
- Molecules moving faster

Evaporation takes place at the surface of a liquid and at a temeprature below the boiling point.
Some molecules at the surface will move fast enough to escape as a gas.
Boiling \rightarrow as temperature is increased the molecules move faster and faster

Condensation

- Phase change from a gas to a liquid.
- Exothermic
- Molecules slowing down
- Ex:
- morning dew
- clouds

Sublimation and Deposition

- Sublimation is the phase change in which a substance changes from a solid to a gas without becoming a liquid.
- Endothermic
- Fast/ Messy
- Ex: Dry ice
- Deposition when a gas becomes a solid without becoming a liquid.
- Exothermic
- Become very orderly/ move slow
- Frost that forms on windshields \rightarrow water vapor hits the cold windshield and immediately becomes ice.

Triple Point

- For every substance there is a specific temperature and pressure in which all three states of matter can exist at the same time.
- By changing temperature and pressure you can find the triple point.

How to Read a Phase Change Graph

