
"In science, there is only physics; all the rest is stamp collecting."

-Ernest Rutherford

2

- Our study of physics begins with the concepts of mechanics: the study of motion.
-We will first be concerned with kinematics, or how we describe motion.
-From there we will move on to the causes of motion, or dynamics.

This is the

- Kinematics is the branch concerned with Idea
being concerned with the forces that cause the motions of objects without
- Dynamics- is cone motion.

- Motion

- occurs when something changes position

> Measuring motion

- Distance

- How far something has moved

Measured in:

5 Distance vs. Displacement

-Distance is how far an object has traveled
-Displacement is how far from the starting point an object actually moved

- Displacement does not equal distance traveled.

How fast Something Moves is PEFD

Speed is the distance an object travels in a certain period of time.

What is his rate of speed?

30 km

- Time $=30 \mathrm{~min}$
- What is his rate of speed?
- Speed = distance/time
- 1 km per min
- $1 \mathrm{~km} / \mathrm{min}$

Graphing Speed

- Constant Speed

$10 \mathrm{t}=0 \mathrm{~s}$
15
2 s
3 s
45
55
둘
品
寝
宝
$\begin{array}{llllll}\text { pos. }=0 \mathrm{~m} & 10 \mathrm{~m} & 20 \mathrm{~m} & 30 \mathrm{~m} & 40 \mathrm{~m} & 50 \mathrm{~m}\end{array}$

CONSTANT SPEED

But rhat if I don't understand slope?

What's Happening Here?

- In order to completely describe the motion of an object we need to include not only
the speed of the object, but also
-the direction!

If I told you that the moon man moved 40 km does that tell you where he is?

No.

You need to know the direction.

When describing velocity, you need to state the direction.

- Ex. $40 \mathrm{~km} / \mathrm{hr}$ east

17

Sometirnes speed changes

 Changing Speed

Acceleration

- Changing Speed
-How fast the speed is changing.
- Units: m/s ${ }^{2}$
-Velocity per sec
$-\mathrm{m} /$ sec per sec

19 EX: If the acceleration is $10 \mathrm{~m} / \mathrm{s}^{2}$

$$
\text { -The object is increasing its speed by } 10 \mathrm{~m} / \mathrm{s}
$$

every sec,!
-How fast is it going after 5 sec.?

20

$$
\begin{array}{rcccc}
\mathrm{t}=0 \mathrm{~s} 1 \mathrm{~s} & 2 \mathrm{~s} & 3 \mathrm{~s} & 4 \mathrm{~s} & 5 \mathrm{~s} \\
\text { pos. }=0 \mathrm{~m} 2 \mathrm{~m} & 8 \mathrm{~m} & 18 \mathrm{~m} & 32 \mathrm{~m} & 50 \mathrm{~m}
\end{array}
$$

- Acceleration: Changing Speed
- Covering more distance every second

Time (s)

Notice that the slope of a velocity－time graph represents the accel＇n of the object．

22

Acceleration

- Can be positive or negative.
- Neg. Acc. Shows that the object is slowing down.
- ACCELERATION IS IN THE OPPOSITE

DIRECTION FROM THE VELOCITY!

Cases of Acceleration

We say that this car is accelerating because its velocity is increasing.

$60 \mathrm{~km} / \mathrm{hr}$

We say that this car is accelerating because its direction is changing as it turns, which means its velocity is changing even though its speed stays constant.

$$
30 \mathrm{~km} / \mathrm{hr} \quad 0 \mathrm{~km} / \mathrm{hr}
$$

We say that this car is accelerating because its velocity is decreasing. Decreasing velocity is still acceleration, although it is a negative acceleration.

What's Happening Here?

Instantaneous Speed

What is the average

 speed of a car that travels 350 kilometersin 5 hours?

A $7 \mathrm{~km} / \mathrm{hr}$
B $70 \mathrm{~km} / \mathrm{hr}$
C $300 \mathrm{~km} / \mathrm{hr}$
D $1750 \mathrm{~km} / \mathrm{hr}$

