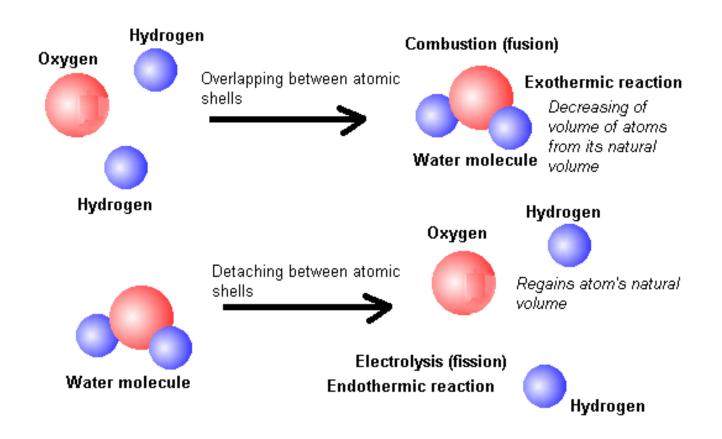
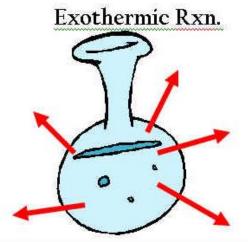
REACTION ENERGY

Please take out your Chemical bonding notes! (2 packets)

Test tomorrow!


ENERGY EXCHANGE

- All chemical reactions <u>release</u> or <u>absorb</u> energy
- Energy can be in many forms:
 - Heat
 - Light
 - Sound
 - Electricity
 - Motion

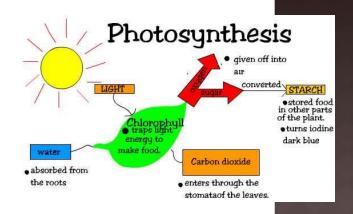

ENERGY EXCHANGE

- Bond formation <u>releases</u> energy
- Breaking bonds <u>requires</u> energy

EXERGONIC REACTIONS

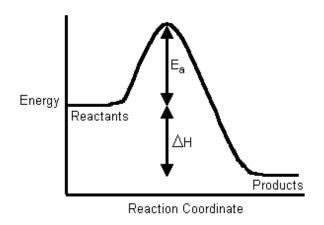
- Reactions that <u>release</u> energy
- If the energy released is *heat energy*, the reaction is *exothermic*

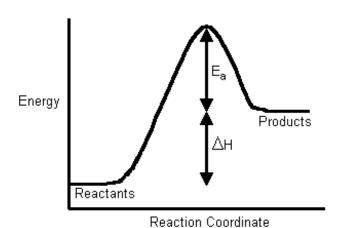
Exothermic reactions


<u>feel hot</u>

• Ex: hand warmers, glow sticks

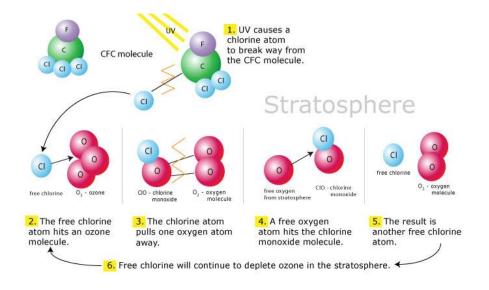
ENDERGONIC REACTIONS


- Reactions that <u>absorb</u> (require) energy
- If the energy absorbed is heat energy, the reaction is <u>endothermic</u>.
- Endothermic reactions
 feel cold
- Ex: Photosynthesis, ice packs



ACTIVATION ENERGY

- **All** reactions take energy to get started!!!
- The energy it takes to get a reaction started is called the <u>activation</u> energy (E_a)



CATALYSTS & INHIBITORS

- A <u>catalyst</u> is a substance that <u>speeds up</u> the reaction
- An <u>inhibitor</u> is a substance that <u>slows down</u> a reaction

MORE ON CATALYSTS

- A catalyst does not <u>change</u> during the reaction
- Lowers the activation energy.
- Ex. CFC's in Ozone depletion.

FACTORS THAT AFFECT REACTION RATES

Unit 5

COLLISION THEORY

- In order to react, reactants must
 - Collide
 - Collide with enough <u>energy</u>
 - Collide with the correct orientation

COLLISION THEORY

The rate of a reaction is affected by four factors:

Concentration
Surface Area
Temperature
Catalyst

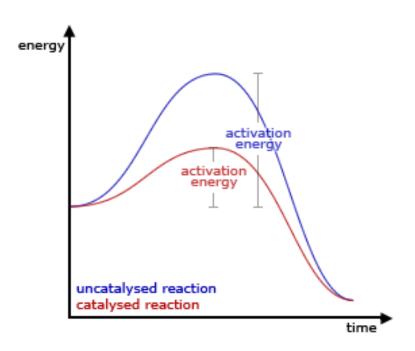
CONCENTRATION

- A measure of the amount of a substance in a given unit of volume
- High concentration = <u>more</u><u>collisions</u>
- Result: More products formed in less time

SURFACE AREA

- Amount of surface <u>exposed</u>
- Increases rate of reaction by breaking into <u>smaller</u> pieces (<u>increases</u> collisions)

Ex: burning wood logs vs. saw dust Which burns faster?


TEMPERATURE

- Higher temperature =
 - 1. Increased energy
 - 2. Increased speed
 - 3. Increased collisions

Result: increased rate of reaction

CATALYST

- Not changed by the chemical reaction
- Speeds up the reaction by lowering the activation energy

